QANplatform
qanplatform.comIntro to QANplatformTechnology FeaturesQANX TokenDev Docs
  • qanplatform.com
  • Welcome
  • Community
    • Social media
    • Newsletter
  • TECHNOLOGY
    • 🟢Intro to QANplatform
    • Technology Features
      • Hybrid blockchain
      • Multi-language Smart Contracts | Hyperpolyglot
      • Ethereum EVM Compatibility
      • Integrations
      • Proof-of-Randomness (PoR) consensus algorithm
      • Transaction per second (TPS)
      • Developer Royalty Fees
      • Mobile Phone Validation
      • Low-cost fixed transaction fees
      • Quantum-resistant Security
    • Use Cases
    • Blockchain 101
      • Blockchain Basics
      • Crypto Wallets
      • Coin and Token Types
      • Blockchain Transactions
  • QANX Token
    • What is QANX?
    • How to Buy QANX?
      • Buy QANX on PancakeSwap
      • Buy QANX on Uniswap
      • Buy QANX on Gate.io
      • Buy QANX on BitMart
      • Buy QANX on BingX
    • How to Store QANX
      • Store QANX in MetaMask
        • How to add QANX token to MetaMask
      • Store QANX in Trust Wallet
        • How to add QANX token to Trust Wallet
      • Store QANX in MEW
        • How to add QANX token to MEW
      • Other wallets
  • DEVELOPERS
    • QAN Private Blockchain
    • QAN TestNet
    • [QVM] Multi-language smart contracts
      • Generic workflow
        • Common API
        • Installing qvmctl
        • Setting up your workspace
        • Writing a smart contract
        • Compiling a smart contract
        • Deploying a smart contract
        • Calling a smart contract function
        • Reading smart contract storage
      • DOCs for supported languages
        • JavaScript (JS) smart contract
          • Writing a smart contract in JavaScript (JS)
          • Compiling a smart contract in JavaScript (JS)
        • Java smart contract
          • Writing a smart contract in Java
          • Compiling a smart contract in Java
        • Python smart contract
          • Writing a smart contract in Python
          • Compiling a smart contract in Python
        • TypeScript (TS) smart contract
          • Writing a smart contract in TypeScript (TS)
          • Compiling a smart contract in TypeScript (TS)
        • C# (C-Sharp) smart contract
          • Writing a smart contract in C# (C-Sharp)
          • Compiling a smart contract in C# (C-Sharp)
        • C++ smart contract
          • Writing a smart contract in C++
          • Compiling a smart contract in C++
        • C smart contract
          • Writing a smart contract in C
          • Compiling a smart contract in C
        • Golang (Go) smart contract
          • Writing a smart contract in Golang (Go)
          • Compiling a smart contract in Golang (Go)
        • Rust smart contract
          • Writing a smart contract in Rust
          • Compiling a smart contract in Rust
        • Kotlin smart contract
          • Writing a smart contract in Kotlin
          • Compiling a smart contract in Kotlin
      • [QVM] Versions & Changelog
        • V0.0.1
        • V0.0.2
    • Smart Contract Developers
    • Validators
    • Node Providers
  • ABOUT US
    • Company
    • Roadmap
    • Press kit & Media assets
    • Media mentions
    • Blog
  • Papers
    • White Paper
    • Pitch Deck
    • Onepager
    • Ebooks
      • Quantum-computing and Blockchain: The Definitive Guide
      • Blockchain's Energy Consumption: The Definitive Guide
      • Blockchain's Transaction Speed: The Definitive Guide
  • Audits
    • QANX Bridge Audit
    • QANX Token Audit
    • QAN TestNet Audit
  • Disclaimers
    • Disclaimer
      • Validation
      • Privacy Policy
      • Cookie Policy
Powered by GitBook
On this page
  1. DEVELOPERS
  2. [QVM] Multi-language smart contracts
  3. DOCs for supported languages
  4. Golang (Go) smart contract

Compiling a smart contract in Golang (Go)

When compiling a Go contract one wants to reduce the resulting binary size to the bare minimum possible to save on deployment fees, since that metric is tied only to the size of the deployed binary.

As a good rule of thumb is to always strip DWARF, symbol table and debug info. To achieve that build with the following flags like the below example:

go build -ldflags '-s -w'

We will provide an optimized compiler for Go which will shrink the binary size (and as a result the deployment fees!) by an order of magnitude. The sample provided compiles to a ~200k sized binary instead of ~1.3M one with information stripped as recommended above or ~1.8M without removing those!

Compiling with the QVM compiler

We already supply a simple compiler container which adds the suggested flags described above to the build command. Since you saved the previous sample contract as main.go in your current directory, you can run the compiler like this:

docker run --rm -v $(pwd):/ws qanplatform/qvm-compiler-go

Afterwards you will end up with a statically linked linux ELF binary called "contract" in your current directory.

PreviousWriting a smart contract in Golang (Go)NextRust smart contract

Last updated 2 years ago